Degradation behavior and biosafety studies of the mPEG-PLGA-PLL copolymer.
نویسندگان
چکیده
In a previous study, a novel biodegradable multiblock copolymer, monomethoxy(poly-ethylene glycol)-poly(d,l-lactide-co-glycolide)-poly(l-lysine) (PEAL), was developed as a new drug carrier material. It is imperative to study the biocompatibility and degradation behavior of PEAL to pave the way for clinical applications. Here, we systematically demonstrated that the PEAL copolymer has the appropriate hydrophilicity and biosafety. The degradation rate of the PEAL films was obtained by observing changes in mass, molecular weight (Mw), Mw distribution and degradation products. The degradation rate was observed to have a highly positive correlation with the pH of the medium and negative correlation with the ratio of lactic acid to glycolic acid (LA/GA). Cytotoxicity tests indicated that the degradation products of the copolymer were non-toxic to cells. In zebrafish embryos, the PEAL nanoparticles had no obvious impact on heart rate, production of reactive oxygen species, mortality, or cell apoptosis, and they were observed to have a long circulation time. Therefore, the PEAL copolymer has great potential for use as a drug carrier material.
منابع مشابه
A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery.
A amphiphilic block copolymer composed of conventional monomethoxy (polyethylene glycol)-poly (d,l-lactide-co-glycolide)-poly (l-lysine) (mPEG-PLGA-b-PLL) was synthesized. The chemical structure of this copolymer and its precursors was confirmed by Fourier Transform Infrared Spectroscopy (FTIR), (1)H Nuclear Magnetic Resonance ((1)H NMR) and Gel Permeation Chromatography (GPC). The copolymer wa...
متن کاملDegradability, bioactivity, and osteogenesis of biocomposite scaffolds of lithium-containing mesoporous bioglass and mPEG-PLGA-b-PLL copolymer
Biocomposite scaffolds of lithium (Li)-containing mesoporous bioglass and monomethoxy poly(ethylene glycol)-poly(D,L-lactide-co-glycolide)-poly(L-lysine) (mPEG-PLGA-b-PLL) copolymer were fabricated in this study. The results showed that the water absorption and degradability of Li-containing mesoporous bioglass/mPEG-PLGA-b-PLL composite (l-MBPC) scaffolds were obviously higher than Li-containin...
متن کاملBiodegradable Nanoparticles of mPEG-PLGA-PLL Triblock Copolymers as Novel Non-Viral Vectors for Improving siRNA Delivery and Gene Silencing
Degradation of mRNA by RNA interference is one of the most powerful and specific mechanisms for gene silencing. However, insufficient cellular uptake and poor stability have limited its usefulness. Here, we report efficient delivery of siRNA via the use of biodegradable nanoparticles (NPs) made from monomethoxypoly(ethylene glycol)-poly(lactic-co-glycolic acid)-poly-l-lysine (mPEG-PLGA-PLL) tri...
متن کاملTreatment of critically sized femoral defects with recombinant BMP-2 delivered by a modified mPEG-PLGA biodegradable thermosensitive hydrogel
BACKGROUND Reconstruction of a segmental fracture with massive bone loss is still a challenge for orthopaedic surgeons. The aim of our study was to develop a suitable biodegradable thermosensitive hydrogel system as a carrier for bone morphogenetic protein (BMP)-2 delivery in the treatment of critical-sized femoral defects. METHODS A block copolymer composed of monomethoxypoly(ethylene glycol...
متن کاملBufalin-loaded mPEG-PLGA-PLL-cRGD nanoparticles: preparation, cellular uptake, tissue distribution, and anticancer activity
BACKGROUND Recent studies have shown that bufalin has a good antitumor effect but has high toxicity, poor water solubility, a short half-life, a narrow therapeutic window, and a toxic dose that is close to the therapeutic dose, which all limit its clinical application. This study aimed to determine the targeting efficacy of nanoparticles (NPs) made of methoxy polyethylene glycol (mPEG), polylac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 17 شماره
صفحات -
تاریخ انتشار 2016